Discrete Semi-classical Orthogonal Polynomials: Generalized Meixner*

A. Ronveaux
Department of Physics, Facultés Universitaires, Notre-Dame de la Paix, 5000 Namur, Belgium
Communicated by P. L. Butzer

Received December 3, 1984

DEDICATED TO THE MEMORY OF GÉZA FREUD

1. At the Bar-le-Duc Conference on Orthogonal Polynomials, E. Hendriksen and H. van Rossum [1] presented a nice characterization of the class of orthogonal polynomials with quasi-orthogonal derivatives. The weight function $\rho(x)$, in the interval of orthogonality I, must satisfy a differential equation of the type

$$
\begin{equation*}
A(x) \rho^{\prime}(x)+B(x) \rho(x)=0 \tag{1}
\end{equation*}
$$

with $A(x)$ and $B(x)$ polynomials having positive leading coefficients, $\operatorname{deg} A \leqslant \operatorname{deg} B$, and $A(x)$ positive inside I.

Denoting $P_{n}(x)$ the nth degree orthonormal polynomial on I with respect to the weight $\rho(x)$, quasi-orthogonality of $P_{n}^{m}(x)$ means that

$$
\begin{equation*}
\int_{I} P_{i}^{(m)}(x) P_{j}^{(m)}(x) \rho_{m}(x) d x=0, \quad \text { if } \quad|i-j|>k, \tag{2}
\end{equation*}
$$

with $\rho_{m}(x)$ obtained from ρ, A, B, and m, and $k \neq 0$.
These polynomials $P_{n}(x)$, called semi-classical by Hendriksen and van Rossum, belong to the Freud class [2] and contain polynomials investigated in [3] that generalize the Laguerre polynomials and correspond to the weight $\rho(x)=x^{\alpha} e^{-Q(x)}, \alpha>-1, Q(x)$ being polynomials with positive leading coefficient. In that case [3] the weight is a solution of a differential equation:

$$
\begin{equation*}
(\sigma \rho)^{\prime}=\tau \rho, \quad \text { with } \quad \tau=\alpha+1-x Q^{\prime} \tag{3}
\end{equation*}
$$

[^0]The aim of this paper is to give a discrete version of the property considered above as applied to an extension of the Meixner [4] class. In the discrete case, the quasi-orthogonality of a family with respect to a weight $\rho(x)$ must be interpreted, in $[0, \infty)$, as

$$
\begin{equation*}
\sum_{i=0}^{\infty} P_{n}(i) P_{m}(i) \rho(i)=0, \quad \text { for } \quad|n-m|>k \neq 0 \tag{4}
\end{equation*}
$$

and will be satisfied by the difference polynomials $\Delta P_{n}(x)=$ $P_{n}(x+1)-P_{n}(x)$.
III. The classical polynomials, in the continuous or discrete case, are characterized [5] by the following property of the positive weight $\rho(x)$: In the continuous case by $(\sigma \rho)^{\prime}=\tau \rho$, in the discrete case by $\Delta(\sigma \rho)=\tau \rho$, with $\sigma(x)=$ polynomial of degree at most 2 and $\tau(x)=$ polynomial of first degree.

Additional properties are imposed at $\rho(x)$ at the end point of the support I in order to insure the existence of the moments $\mu_{k}=\int_{0}^{\infty} \rho(x) x^{k} d x$ or $\mu_{k}=\sum_{i=0}^{\infty} i^{k} \rho(i)$, in the discrete case in $[0, \infty)$.

It is obvious that the property of orthogonality of $P_{n}^{\prime}(x)$ [or $\left.\Delta P_{n}(x)\right]$ in the classical case is a consequence of $\operatorname{deg} \tau=1$ and $\operatorname{deg} \sigma \leqslant 2$ as we can see immediately by integration by parts,

$$
\begin{align*}
0 & =\int_{0}^{\infty} x^{m-1} P_{n}(x) \rho(x) \tau(x) d x=\int_{0}^{\infty} x^{m-1}(\sigma \rho)^{\prime} P_{n} d x \\
& =\left[x^{m-1} P_{n} \sigma \rho\right]_{0}^{\infty}-\int_{0}^{\infty} \sigma \rho\left(x^{m-1} P_{n}\right)^{\prime} d x \tag{5}\\
& =-\int_{0}^{\infty} \sigma \rho x^{m-1} P_{n}^{\prime} d x \quad(m<n)
\end{align*}
$$

The last integral insures orthogonality of the P_{n}^{\prime} with respect to $\rho_{1} \equiv \sigma \rho$.
In order to generalize and to insure only quasi-orthogonality, we need to look at the solution of Eq. (3) with $\tau(x)$ of degree larger than one.
III. In the same way, let us construct in the discrete case a weight $\rho(x)$ solution of

$$
\begin{equation*}
\Delta(\sigma \rho)=\tau \rho \tag{6}
\end{equation*}
$$

with appropriate σ and such that $\tau=\tau(x)$ be a polynomial of degree larger than one.

The difference equation (6) can be written as

$$
\begin{equation*}
\frac{\rho(x+1)}{\rho(x)}=\frac{\sigma(x)+\tau(x)}{\sigma(x+1)}, \tag{7}
\end{equation*}
$$

and it is well known [5] that if $\sigma(x)$ and $\tau(x)$ are polynomials (assumed factorized), the solution of Eq. (7) involves Euler's Γ-function. From the asymptotic development of the ratio of two Γ-functions, namely,

$$
\begin{equation*}
\frac{\Gamma(a+x)}{\Gamma(x)} \simeq x^{a}\left[1+0\left(\frac{1}{x}\right)\right] \quad(x \rightarrow \infty \quad a>0) \tag{8}
\end{equation*}
$$

we see immediately that the degree of σ and τ must be equal in order to insure that $\lim _{x \rightarrow \infty} x^{n} \rho(x)=0$, for $n=0,1,2, \ldots$. Let us choose $\sigma(x)=x^{q}$, and let us assume that $\tau(x)$, also of degree q, can be written in such a way that Eq. (7) becomes

$$
\begin{equation*}
\frac{\rho(x+1)}{\rho(x)}=\frac{\mu \prod_{i=1}^{q}\left(x+\gamma_{i}\right)}{(x+1)^{q}} \tag{9}
\end{equation*}
$$

The solution of this difference equation gives

$$
\begin{equation*}
\rho(x)=C \cdot \mu^{x} \frac{\prod_{i=1}^{q} \Gamma\left(x+\gamma_{i}\right)}{[\Gamma(x+1)]^{q}} . \tag{10}
\end{equation*}
$$

The choices $0<\mu<1, \gamma_{i}>0, C>0$ insure positivity of ρ in $[0, \infty)$, $\tau(0) \neq 0$, and the existence of all moments $\mu_{k}=\sum_{i=0}^{\infty} i^{k} \rho(i)$.
Let us also remark that the choice of μ implies that the leading coefficient of $\tau(x)$ is the negative number $\mu-1$.
In analogy with the Meixner case let us choose $C=\prod_{i=1}^{q}\left(1 / \Gamma\left(\gamma_{i}\right)\right)$ so that the weight becomes, with $(\gamma)_{n}=\Gamma(\gamma+n) / \Gamma(\gamma)$,

$$
\begin{equation*}
\rho(x)=\frac{\mu^{x}}{[\Gamma(x+1)]^{4}} \prod_{i=1}^{q}\left(\gamma_{i}\right)_{x} \tag{11}
\end{equation*}
$$

we note $m_{n}^{\left(\gamma_{i} \cdots \gamma_{q, \mu}\right)}(x)$ or $m_{n}^{(\gamma, \mu)}(x)$ the corresponding orthogonal polynomials in [$0, \infty$), which reduce to the Meixner polynomials [4] when $q=1$.
IV. Let us now prove the quasi-orthogonality character of the polynomials $\Delta m_{n}^{(\gamma, \mu)}(x)$. To simplify the typography, let us note [5]

$$
\begin{equation*}
p_{n}(i)=m_{n}^{(\gamma, \mu)}(i), \quad \tau_{i}=\tau(i), \quad \sigma_{i}=\sigma(i), \quad \rho_{i}=\rho(i) . \tag{12}
\end{equation*}
$$

With $\tau(x)$, polynomials of degree q, the orthogonality relation gives

$$
\sum_{i=0}^{\infty} i^{m-q} p_{n}(i) \tau_{i} \rho_{i}=0, \quad m<n, \quad q \leqslant m .
$$

From (6), and the formula for the Δ of a product, $\Delta\left(f_{i} g_{i}\right)=f_{i} \Delta g_{i}+g_{i+1} \Delta f_{i}$, we obtain

$$
\begin{align*}
i^{m-q} \tau_{i} \rho_{i} & =i^{m-q} \Delta\left(\sigma_{i} \rho_{i}\right) \\
& =\Delta\left[(i-1)^{m-q} \sigma_{i} \rho_{i}\right]-\sigma_{i} \rho_{i} \Delta(i-1)^{m-q} . \tag{14}
\end{align*}
$$

Now (13) becomes

$$
\begin{align*}
0 & =\sum_{i=0}^{\infty} i^{m-q} p_{n}(i) \tau_{i} \rho_{i} \\
& =\sum_{i=0}^{\infty} p_{n}(i) \Delta\left[(i-1)^{m-q} \sigma_{i} \rho_{i}\right]-\sum_{i=0}^{\infty} p_{n}(i) \sigma_{i} \rho_{i} \Delta(i-1)^{m-q} . \tag{15}
\end{align*}
$$

This last term is zero because the degree of $\sigma(x) \Delta(x-1)^{m-q}$ is $m-1<n$. The first term can be written, using finite summation by parts [6], as

$$
\begin{align*}
& \sum_{i=0}^{\infty} f_{i} \Delta g_{i}=\left[f_{i} g_{i}\right]_{0}^{\infty}-\sum_{i=0}^{\infty} g_{i+1} \Delta f_{i}, \tag{16}\\
& 0=\sum_{i=0}^{\infty} p_{n}(i) \Delta\left[(i-1)^{m-q} \sigma_{i} \rho_{i}\right] \tag{17}\\
&=\left[p_{n}(i)(i-1)^{m-q} \sigma_{i} \rho_{i}\right]_{0}^{\infty}-\sum_{i=0}^{\infty} i^{m-q} \sigma_{i+1} \rho_{i+1} \Delta p_{n}(i) \quad(m-q \leqslant n-2) .
\end{align*}
$$

The boundary condition at 0 and ∞ gives zero for the first term from the choice of $\mu(\mu<1)$ and $\sigma(x)\left(\sigma_{0}=0\right)$.
The vanishing value of the last summation for all $m<n$ involves quasiorthogonality of order $k=q-1$ with respect to the weight $\sigma_{i+1} \rho_{i+1}$, explicitly given by

$$
\sigma(x+1) \rho(x+1)=\left(\frac{x+1}{\Gamma(x+2)}\right)^{q} \mu^{x+1} \prod_{i=1}^{q}\left(\gamma_{i}\right)_{x+1}
$$

or, equivalently,

$$
\sigma(x+1) \rho(x+1)=\frac{\mu^{x+1}}{[\Gamma(x+1)]^{q}} \prod_{i=1}^{q}\left(\gamma_{i}\right)_{x+1} .
$$

V. The extension to polynomials $\Delta^{k} p_{n}(x)(k>1)$ is obvious as in the continuous case. The solution of Eq. ((7) for polynomial $\tau(x)$ contains probably the complete class of discrete orthogonal polynomials with the property shown above, but the existence of all moments and the positivity of $\rho(x)$ gives of course severe restrictions in the construction of other weights.

Acknowledgments

It is a pleasure to thank the referees and Prof. Dr. P. L. Butzer for helpful suggestions on improving the original manuscript.

References

1. E. Hendriksen and H. van Rossum, Semi-classical orthogonal polynomials, in "Proceedings of the Laguerre Symposium-Polynômes orthogonaux et leurs applications, Bar-le-Duc, France, Oct. 1984." (C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux, Eds.), Springer-Verlag, New York/Berlin, 1985.
2. P. Nevar, "Orthogonal Polynomials on Infinite Intervals," Department of Mathematics, Ohio State University, Columbus, Ohio. [Preprint]
3. A. Ronveaux, Polynômes orthogonaux dont les polynômes dérivés sont quasi orthogonaux C.R. Acad. Sci. Paris (A) 289 (1979), 433-436.
4. J. Meixner, Orthogonale Polynomsysteme mit einen besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc. 9 (1934) 6-13.
5. A. Nikiforov and V. Ouvarov, "Fonctions spéciales de la physique mathématique"; and "Eléments de la théorie des fonctions spéciales," Mir, Moscou, 1983 et 1976.
6. L. M. Milne-Thomson, "The Calculus of Finite Differences," MacMillan \& Co., London, 1965.

[^0]: * The property of quasi-orthogonality of the derivatives of semi-classical orthogonal polynomials is extended to the discrete case for generalized Meixner polynomials.

